通过在未标记的目标域中应用良好的模型,通过对标记的源域的监督应用了良好的模型,已经通过对未标记的目标域应用了良好的模型,对无监督的域适应(UDA)进行了大量探索,以减轻源和目标域之间的域变化。然而,最近的文献表明,在存在重大领域变化的情况下,性能仍然远非令人满意。但是,由于绩效的实质性增长,划定一些目标样本通常是易于管理的,尤其是值得的。受此启发的启发,我们旨在开发半监督域的适应性(SSDA)进行医学图像分割,这在很大程度上没有被置于脑海中。因此,除了以统一的方式使用未标记的目标数据外,我们建议利用标记的源和目标域数据。具体而言,我们提出了一种新型的不对称共同训练(ACT)框架,以整合这些子集并避免源域数据的统治。遵循分歧和纠纷策略,我们将SSDA的标签监督分为两个不对称的子任务,包括半监督学习(SSL)和UDA,并利用两个细分市场的不同知识来考虑在两个部分之间的区别,以考虑到不同的知识。来源和目标标签监督。然后,在两个模块中学习的知识与ACT自适应地整合,通过基于置信度的伪标签进行迭代教学。此外,伪标签噪声与指数混合衰减方案可以很好地控制,以进行平滑传播。使用BRATS18数据库进行跨模式脑肿瘤MRI分割任务的实验表明,即使标记有限的目标样本,ACT也对UDA和最先进的SSDA方法产生了明显的改进,并接近了受监督的联合训练的“上限” 。
translated by 谷歌翻译
A self-supervised adaptive low-light video enhancement (SALVE) method is proposed in this work. SALVE first conducts an effective Retinex-based low-light image enhancement on a few key frames of an input low-light video. Next, it learns mappings from the low- to enhanced-light frames via Ridge regression. Finally, it uses these mappings to enhance the remaining frames in the input video. SALVE is a hybrid method that combines components from a traditional Retinex-based image enhancement method and a learning-based method. The former component leads to a robust solution which is easily adaptive to new real-world environments. The latter component offers a fast, computationally inexpensive and temporally consistent solution. We conduct extensive experiments to show the superior performance of SALVE. Our user study shows that 87% of participants prefer SALVE over prior work.
translated by 谷歌翻译
提出了一种多网格多块大小矢量量化(MGBVQ)方法,用于在这项工作中进行图像编码。图像编码的基本概念是在量化和熵编码之前删除像素之间的相关性,例如,由现代图像编码标准采用的离散余弦变换(DCT)和内部预测。我们提出了一种删除像素相关性的新方法。首先,通过将相关性分解为长期和短距离相关性,我们由于其平滑度而表示较粗的网格中的远距离相关性,从而导致多元格里德(MG)编码体系结构。其次,我们表明可以通过一组矢量量化器(VQS)有效地编码短程相关性。沿着这条线,我们争论了非常大的块大小的VQ的有效性,并提出了一种实施它们的便捷方法。通过实验结果表明,MGBVQ提供了出色的速率 - 持续性能(RD)性能,与现有的图像编码器相当,复杂性较低。此外,它提供了渐进式编码的Bitstream。
translated by 谷歌翻译
我们提供了一种单发图像合成的方法,该方法可以通过倒置配备有强正规化器的准稳定分类器来控制单个图像的操作。我们提出的标题为“魔术”的方法是从预先训练的准稳定分类器中的结构化梯度,以更好地保留输入语义,同时保留其分类精度,从而确保合成中的信誉。与当前使用复杂原语的当前方法来监督该过程或使用注意图作为弱监督信号,魔术汇总了输入上的梯度,这是由导向二进制掩码驱动的,该导向二进制掩码可以实施强大的空间先验。魔术在一个框架上实现了一系列的操作,以实现形状和位置控制,强烈的非刚性形状变形,并在存在重复对象的情况下复制/移动操作,并通过仅需指定二进制指南掩码来使用户对综合的企业控制。我们的研究和发现得到了与最新图像的各种定性比较,从成像网和使用机器感知进行定量分析的相同图像以及对100多名参与者的用户调查来认可我们的合成质量。
translated by 谷歌翻译
知识图完成(KGC)旨在发现知识图(KGS)中实体之间的缺失关系。大多数先前的KGC工作都集中在实体和关系的学习表现上。然而,通常需要更高维度的嵌入空间才能获得更好的推理能力,这会导致更大的模型大小,并阻碍对现实世界中的问题的适用性(例如,大规模kgs或移动/边缘计算)。在这项工作中提出了一种称为GreenKGC的轻型模块化的KGC解决方案,以解决此问题。 GreenKGC由三个模块组成:1)表示学习,2)特征修剪和3)决策学习。在模块1中,我们利用现有的KG嵌入模型来学习实体和关系的高维表示。在模块2中,KG分为几个关系组,然后分为一个特征修剪过程,以找到每个关系组的最判别特征。最后,将分类器分配给每个关系组,以应对模块3中KGC任务的低维三功能原始的高维嵌入型号尺寸较小。此外,我们对两个三重分类数据集进行了实验,以证明相同的方法可以推广到更多任务。
translated by 谷歌翻译
无监督的域适应性(UDA)已被广泛用于将知识从标记的源域转移到未标记的目标域,以抵消在新域中标记的难度。常规解决方案的培训通常依赖于源和目标域数据的存在。但是,源域和经过训练的模型参数中大规模和标记的数据的隐私可能成为跨中心/域协作的主要关注点。在这项工作中,为了解决这个问题,我们为UDA提出了一个实用的解决方案,以使用仅在源域中训练的黑框分割模型,而不是原始源数据或白盒源模型。具体而言,我们求助于具有指数混合衰减(EMD)的知识蒸馏方案,以逐步学习针对目标的表示。另外,无监督的熵最小化进一步应用于目标域置信度的正则化。我们在Brats 2018数据库上评估了我们的框架,并以White-Box源模型适应方法在标准杆上实现了性能。
translated by 谷歌翻译
无监督的域适应性(UDA)已成功地应用于没有标签的标记源域转移到目标域的知识。最近引入了可转移的原型网络(TPN),进一步解决了班级条件比对。在TPN中,虽然在潜在空间中明确执行了源和目标域之间的类中心的接近度,但尚未完全研究基础的细颗粒亚型结构和跨域紧凑性。为了解决这个问题,我们提出了一种新方法,以适应性地执行细粒度的亚型意识对准,以提高目标域的性能,而无需两个域中的子类型标签。我们方法的见解是,由于不同的条件和标签变化,同类中未标记的亚型在亚型内具有局部接近性,同时表现出不同的特征。具体而言,我们建议通过使用中间伪标签同时执行亚型的紧凑度和阶级分离。此外,我们系统地研究了有或不具有亚型数字的各种情况,并建议利用基本的亚型结构。此外,开发了一个动态队列框架,以使用替代处理方案稳步地进化亚型簇质心。与最先进的UDA方法相比,使用多视图的先天性心脏病数据和VISDA和域进行了实验结果,显示了我们的亚型意识UDA的有效性和有效性。
translated by 谷歌翻译
基于决策树(DT)的分类和回归思想,最近提议在总体分类和回归任务中提供更高的性能。以更高的计算复杂性为代价,达到了其性能的改进。在这项工作中,我们研究了两种加速SLM的方法。首先,我们采用粒子群优化(PSO)算法来加快对当前尺寸的线性组合表示的判别尺寸的搜索。线性组合中最佳权重的搜索在计算上很重。它是通过原始SLM中的概率搜索来完成的。 PSO的SLM加速需要减少10-20倍的迭代。其次,我们利用SLM实施中的并行处理。实验结果表明,加速的SLM方法在训练时间中达到577的速度系数,同时保持原始SLM的可比分类/回归性能。
translated by 谷歌翻译
以人为本的人工智能考虑了人工智能表现的经验。尽管丰富的研究一直在通过全自动或弱监督学习来帮助AI实现超人类的表现,但较少的努力正在尝试AI如何量身定制人类对人类首选技能水平的限制。在这项工作中,我们指导课程加强学习结果朝着首选的绩效水平,通过从人类的决策过程中学习而不是太困难也不容易。为了实现这一目标,我们开发了一个便携式交互式平台,使用户能够通过操纵任务难度,观察性能并提供课程反馈来在线与代理商进行交互。我们的系统高度可行,使人类可以训练大规模的增强学习应用程序,这些学习应用需要数百万没有服务器的样品。结果证明了互动课程对涉及人类在环的增强学习的有效性。它显示强化学习绩效可以成功地与人类所需的难度水平同步调整。我们认为,这项研究将为实现流动和个性化的适应性困难打开新的大门。
translated by 谷歌翻译
提出了一种统计注意力定位(SAL)方法,以促进本工作中的对象分类任务。 SAL由三个步骤组成:1)通过决策统计数据的初步注意窗口选择,2)注意力图改进和3)矩形注意区域的最终确定。 SAL计算本地平方窗口的软性决定分数,并使用它们来识别步骤1中的明显区域。为了适应各种尺寸和形状的对象,SAL优化了初步结果,并在步骤2中获得了更灵活形状的注意力图。最后, SAL使用步骤3中的精制注意图和边界框正则化产生矩形注意区域。作为应用程序,我们采用E-PixelHop,这是基于连续的子空间学习(SSL)的对象分类解决方案,作为基线。我们应用SAL以获取裁剪和调整大小的注意区域作为替代输入。整个图像的分类结果以及注意区域都被结合起来,以达到最高的分类精度。给出了CIFAR-10数据集上的实验,以证明SAL辅助对象分类方法的优势。
translated by 谷歌翻译